Biology nerds have made proteins play Chopin-esque tunes

Add it to your playlists

The musical analogies of proteins

Proteinsare structured like folded chains. These chains are composed of small units of 20 possible amino acids, each labeled by a letter of the alphabet.

Protein chains can also fold into wavy and curved patterns with ups, downs, turns, and loops. Likewise, music consists of sound waves of higher and lower pitches, with changing tempos and repeating motifs. A protein chain can be represented as a string of these alphabetic letters, very much like a string of music notes in alphabetical notation.

Protein-to-music algorithms can thus map the structural and physiochemical features of a string of amino acids onto the musical features of a string of notes.

Enhancing the musicality of protein mapping

Protein-to-music mapping can be fine-tuned by basing it on the features of a specific music style. This enhances musicality or the melodiousness of the song, when converting amino acid properties, such as sequence patterns and variations, into analogous musical properties, like pitch, note lengths, and chords.

For our study, we specifically selected 19th-centuryRomantic period classical piano music, which includes composers like Chopin and Schubert, as a guide because it typically spans a wide range of notes with more complex features such aschromaticism, like playing both white and black keys on a piano in order of pitch, and chords. Music from this period also tends to have lighter and more graceful and emotive melodies. Songs are usuallyhomophonic, meaning they follow a central melody with accompaniment. These features allowed us to test out a greater range of notes in our protein-to-music mapping algorithm. In this case, we chose to analyze features ofChopin’s “Fantaisie-Impromptu”to guide our development of the program.

To test the algorithm, we applied it to 18 proteins that play a key role in various biological functions. Each amino acid in the protein is mapped to a particular note based on how frequently they appear in the protein, and other aspects of their biochemistry correspond with other aspects of the music. A larger-sized amino acid, for instance, would have a shorter note length, and vice versa.

The resulting music is complex, with notable variations in pitch, loudness, and rhythm. Because the algorithm was completely based on the amino acid sequence and no two proteins share the same amino acid sequence, each protein will produce a distinct song. This also means that there are variations in musicality across the different pieces, and interesting patterns can emerge.

For example, music generated from the receptor protein that binds to thehormone and neurotransmitter oxytocinhas some recurring motifs due to the repetition of certain small sequences of amino acids.

On the other hand, music generated fromtumor antigen p53, a protein that prevents cancer formation, is highly chromatic, producing particularly fascinating phrases where the music sounds almosttoccata-like, a style that often features fast and virtuoso technique.

By guiding the analysis of amino acid properties through specific music styles, protein music can sound much more pleasant to the ear. This can be further developed and applied to a wider variety of music styles, including pop and jazz.

Protein music is an example of how combining the biological and computational sciences can produce beautiful works of art. Our hope is that this work will encourage researchers to compose protein music of different styles and inspire the public to learn about the basic building blocks of life.

This study was collaboratively developed with Nicole Tay, Fanxi Liu, Chaoxin Wang and Hui Zhang.

Article byPeng Zhang, Postdoctoral Researcher in Computational Biology,The Rockefeller UniversityandYuzong Chen, Professor of Pharmacy,National University of Singapore

This article is republished fromThe Conversationunder a Creative Commons license. Read theoriginal article.

Story byThe Conversation

An independent news and commentary website produced by academics and journalists.An independent news and commentary website produced by academics and journalists.

Get the TNW newsletter

Get the most important tech news in your inbox each week.

Also tagged with

More TNW

About TNW

How AI can make the world more fair for ‘gifted’ kids

This AI lets you generate new verses from your favorite rappers

Discover TNW All Access

Spotify’s song booster service offers better exposure for slashed royalties

This AI chess engine aims to help human players rather than defeat them