The W boson is bigger than we thought — a physicist explains

Here’s what that means for the Standard Model

A particle that carries the weak force

TheStandard Model of particle physicsis science’s current best framework for the basic laws of the universe anddescribes three basic forces: the electromagnetic force, the weak force and the strong force.

The strong force holds atomic nuclei together. But some nuclei are unstable and undergo radioactive decay, slowly releasing energy by emitting particles. This process is driven by the weak force, and since the early 1900s, physicists sought an explanation for why and how atoms decay.

According to the Standard Model, forces are transmitted by particles. In the 1960s, a series oftheoretical and experimental breakthroughsproposed that the weak force is transmitted by particles called W and Z bosons. It also postulated that a third particle, the Higgs boson, is what gives all other particles – including W and Z bosons – mass.

Since the advent of the Standard Model in the 1960s, scientists have been working their way down the list of predicted yet undiscovered particles and measuring their properties. In 1983, two experiments at CERN in Geneva, Switzerland,captured the first evidence of the existence of the W boson. It appeared to have the mass of roughly a medium-sized atom such as bromine.

By the 2000s, there was just one piece missing to complete the Standard Model and tie everything together: the Higgs boson. I helped search for the Higgs boson on three successive experiments, and at last wediscovered it in 2012at the Large Hadron Collider at CERN.

The Standard Model was complete, and all the measurements we made hung together beautifully with the predictions.

Measuring W bosons

Testing the Standard Model is fun – you just smash particles together at very high energies. These collisions briefly produce heavier particles that then decay back into lighter ones. Physicists use huge and very sensitive detectors at places like Fermilab and CERN to measure the properties and interactions of the particles produced in these collisions.

In CDF, W bosons are produced aboutone out of every 10 million timeswhen a proton and an antiproton collide. Antiprotons are the antimatter version of protons, with exactly the same mass but opposite charge. Protons are made of smaller fundamental particles called quarks, and antiprotons are made of antiquarks. It is the collision between quarks and antiquarks thatcreate W bosons. W bosons decay so fast that they are impossible to measure directly. So physicists track the energy produced from their decay to measure the mass of W bosons.

In the 40 years since scientists first detected evidence of the W boson, successive experiments have attained ever more precise measurements of its mass. But it is only since the measurement of the Higgs boson – since it gives mass to all other particles – that researchers could check the measured mass of W bosons against themass predicted by the Standard Model. The prediction and the experiments always matched up – until now.

Unexpectedly heavy

The CDF detector at Fermilab is excellent at accurately measuring W bosons. From 2001 to 2011, the accelerator collided protons with antiprotons trillions of times, producing millions of W bosons and recording as much data as possible from each collision.

The Fermilab team publishedinitial resultsusing a fraction of the data in 2012. We found the mass to be slightly off, but close to the prediction. The team then spent a decade painstakingly analyzing the full data set. The process included numerous internal cross-checks and required years of computer simulations. To avoid any bias creeping into the analysis, nobody could see any results until the full calculation was complete.

When the physics world finally saw the result on April 7, 2022, we were all surprised. Physicists measure elementary particle masses in units of millions of electron volts – shortened to MeV. The W boson’s masscame out to be 80,433 MeV– 70 MeV higher than what the Standard Model predicts it should be. This may seem like a tiny excess, but the measurement is accurate to within 9 MeV. This is a deviation of nearly eight times the margin of error. When my colleagues and I saw the result, our reaction was a resounding “wow!”

What this means for the Standard Model

The fact that the measured mass of the W boson doesn’t match the predicted mass within the Standard Model could mean three things. Either the math is wrong, the measurement is wrong or there is something missing from the Standard Model.

First, the math. In order to calculate the W boson’s mass, physicists use the mass of the Higgs boson. CERN experiments have allowed physicists tomeasure the Higgs boson massto within a quarter-percent. Additionally, theoretical physicists have beenworking on the W boson mass calculations for decades. While the math is sophisticated, the prediction is solid and not likely to change.

The next possibility is a flaw in the experiment or analysis. Physicists all over the world are already reviewing the result to try to poke holes in it. Additionally, future experiments at CERN may eventually achieve a more precise result that will either confirm or refute the Fermilab mass. But in my opinion, the experiment is as good a measurement as is currently possible.

That leaves the last option: There are unexplained particles or forces causing the upward shift in the W boson’s mass. Even before this measurement, some theorists hadproposed potential new particles or forcesthat would result in the observed deviation. In the coming months and years, I expect a raft of new papers seeking to explain the puzzling mass of W bosons.

As a particle physicist, I am confident in saying that there must be more physics waiting to be discovered beyond the Standard Model. If this new result holds up, it will be the latest in a series of findings showing that the Standard Model and real-world measurements oftendon’t quite match. It is these mysteries that give physicists new clues and new reasons to keep searching for fuller understanding of matter, energy, space and time.

Article byJohn Conway, Professor of Physics,University of California, Davis

This article is republished fromThe Conversationunder a Creative Commons license. Read theoriginal article.

Story byThe Conversation

An independent news and commentary website produced by academics and journalists.An independent news and commentary website produced by academics and journalists.

Get the TNW newsletter

Get the most important tech news in your inbox each week.

Also tagged with

More TNW

About TNW

We made a ‘time crystal’ — here’s what the quantum system could do

Why mathematics is essential to understanding our universe

Discover TNW All Access

Astronomers have found a VERY sneaky black hole

European astrophysicist pokes a giant hole in the Big Bang inflationary theory